de

Cadre: Soit E un K-espace vectoriel de dimension finie $n \in \mathbb{N}^*$, où K Transvections est un corps commutatif.

Le groupe linéaire $\mathcal{GL}(E)$

Définition et premières propriétés

Définition 1. Le groupe linéaire $\mathcal{GL}(E)$ de E est l'ensemble des \mathbb{K} automorphismes de E, c'est-à-dire des applications \mathbb{K} -linéaires bijectives de E dans E. C'est un groupe pour la composition des applications.

Exemple 2. Les homothéties et les rotations sont dans $\mathcal{GL}(E)$.

Proposition 3. Soit $u \in \mathcal{L}(E)$. Alors la surjectivité de u, son injectivité et sa bijectivité sont équivalentes.

Proposition 4. Pour une base \mathcal{B} donnée de E, on a un isomorphisme $de \ \mathcal{GL}(E) \ sur \ \mathcal{GL}_n(\mathbb{K}).$

Proposition 5. Soit $u \in \mathcal{L}(E)$. $u \in \mathcal{GL}(E)$ si, et seulement si, $\det u \neq 0$.

Définition 6. Le déterminant det : $\mathcal{GL}(E) \to \mathbb{K}^*$ est un morphisme de groupes. On appelle groupe spécial linéaire, noté $\mathcal{SL}(E)$, son noyau.

Proposition 7. $\mathcal{SL}(E)$ est un sous-groupe distingué de $\mathcal{GL}(E)$, et $\mathcal{GL}(E)/\mathcal{SL}(E) \cong \mathbb{K}^*$.

Quelques éléments de $\mathcal{GL}(E)$

Dilatations

Proposition 8. Soient H un hyperplan de E et $u \in \mathcal{GL}(E)$ tel que $u|_{H} = Id_{H}$. Les assertions suivantes sont équivalentes.

- (i) $det(u) = \lambda \neq 1$
- (ii) λ est valeur propre de u et u est diagonalisable.
- (iii) $D = \operatorname{Im}(u Id_E) \not\subset H$
- (iv) La matrice de u dans une certaine base est $D_i(\lambda)$.

u est alors une dilatation d'hyperplan H de droite D et de rapport λ .

Proposition 9. Deux dilatations de même rapport sont conjuguées.

Proposition 10. Soient H = Ker(f) un hyperplan de E et $u \in \mathcal{GL}(E)$ tel que $u \neq Id_E$ et $u|_H = Id_H$. On note $D = \text{Im}(u - Id_E)$. Les assertions suivantes sont équivalentes.

- (i) det(u) = 1
- (ii) u n'est pas diagonalisable.
- (iii) $D \subset H$
- (iv) $\overline{u}: E/H \to E/H$ définie par $\overline{u}(\overline{x}) = \overline{u(x)}$ est l'identité.
- (v) Il existe $a \in H \setminus \{0\}$ tel que $u = Id_E + fa$.
- (vi) La matrice de u dans une certaine base est $T_{i,i}(\lambda)$.

u est alors une transvection d'hyperplan H de droite D.

Corollaire 11. Soit $u \in \mathcal{GL}(E)$ tel que $u \neq Id_E$. Les assertions suivantes sont équivalentes :

- (i) u est une transvection de droite D.
- (ii) $\overline{u}: E/D \to E/D$ définie par $\overline{u}(\overline{x}) = \overline{u(x)}$ est l'identité et $u|_D = Id_D$.

Homothéties

Définition 12. Soit $u \in \mathcal{GL}(E)$. On dit que u est une homothétie de rapport $\lambda \in \mathbb{K}^*$ si $u = \lambda Id_E$.

Proposition 13. Soit u une homothétie de rapport λ . Alors $\det u = \lambda^n$.

Proposition 14. Soit $u \in \mathcal{GL}(E)$. Alors u est une homothétie si, et seulement si, u stabilise toutes les droites.

Générateurs

Lemme 15. On suppose E de dimension $n \ge 2$. Soient $x, y \in E \setminus \{0\}$. Il existe une transvection u ou un produit de deux transvections uv. tel que u(x) = y ou uv(x) = y.

Théorème 16. Les transvections engendrent SL(E).

Théorème 17. Les transvections et les dilatations engendrent $\mathcal{GL}(E)$.

de

II Sous-groupes de $\mathcal{GL}(E)$

1) Centres

Théorème 18. Le centre de $\mathcal{GL}(E)$ est $Z(\mathcal{GL}(E)) = \{\lambda Id_E \mid \lambda \in \mathbb{K}^*\}$. Le centre de $\mathcal{SL}(E)$ est $Z(\mathcal{SL}(E)) = Z(\mathcal{GL}(E)) \cap \mathcal{SL}(E)$.

Exemple 19. On considère $\mathbb{K} = \mathbb{R}$ Alors $Z(\mathcal{GL}(E)) = \{\pm Id_E\}$. De plus, $Z(\mathcal{SL}(E)) = \{Id_E\}$ si n est impair, et $Z(\mathcal{SL}(E)) = \{\pm Id_E\}$ si n est pair.

Exemple 20. On considère $\mathbb{K} = \mathbb{C}$ Alors $Z(\mathcal{SL}(E)) \cong \mathbb{Z}/n\mathbb{Z}$.

Définition 21. Le quotient de $\mathcal{GL}(E)$ (resp. $\mathcal{SL}(E)$) par son centre est appelé groupe projectif (spécial) linéaire, noté $\mathcal{PGL}(\mathcal{E})$ (resp. $\mathcal{PSL}(\mathcal{E})$).

2) Groupe orthogonal $\mathcal{O}(E)$

On suppose ici que $\operatorname{car}(\mathbb{K}) \neq 2$. Soit q une forme quadratique sur E de forme polaire f.

Définition 22. On appelle groupe orthogonal l'ensemble $\mathcal{O}(q)$ défini par :

$$\mathcal{O}(q) = \{ u \in \mathcal{GL}(E) \mid \forall x \in E, \ q(u(x)) = q(x) \}$$

Les éléments de $\mathcal{O}(q)$ sont appelés les isométries de E relativement à q. On note $\mathcal{SO}(q)$ les isométries de déterminant 1.

Proposition 23. $\mathcal{O}(q)$ est un sous-groupe de $\mathcal{GL}(E)$.

Proposition 24. Si $u \in \mathcal{GL}(E)$ est tel que $u^2 = Id_E$, il existe une décomposition $E = E^+ \oplus E^-$ telle que $u|_{E^+} = Id_E$ et $u|_{E^-} = -Id_E$. Si $E^- = \{0\}$, on dit que u est une involution. Si dim $E^- = 1$ (resp. 2), on dit que u est une réflexion (resp. un renversement).

Proposition 25. Si $u \in \mathcal{GL}(E)$ est tel que $u^2 = Id_E$, alors u est une isométrie pour q si, et seulement si, E^+ et E^- sont orthogonaux.

Théorème 26. Si f est le produit scalaire usuel sur \mathbb{R}^n , alors $\mathcal{O}(q)$ est engendré par les réflexions, et $\mathcal{SO}(q)$ par les renversements si $n \geq 3$.

Théorème 27. Soit $M \in \mathcal{O}_n(\mathbb{R})$, alors M est semblable à :

$$\begin{pmatrix} I_r & & & 0 \\ & -I_m & & \\ & & R_{\theta_1} & \\ & & & \ddots \\ 0 & & & R_{\theta_s} \end{pmatrix} avec \begin{cases} \theta_i \in]0; 2\pi[\setminus \{\pi\} \\ R_{\theta_i} = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \end{cases}$$

III Actions de $\mathcal{GL}(E)$ et de ses sous-groupes

1) Action sur les sous-espaces de E

Le groupe $\mathcal{GL}(E)$ agit sur E par $u \cdot x = u(x)$, et sur l'ensemble des sousespaces vectoriels de E de même dimension par $f \cdot V = f(V)$.

Remarque 28. Ces actions de groupes sont transitives.

Proposition 29. La restriction à SL(E) de ces actions est encore transitive. De même, si E est euclidien, la restriction à SO(E) est transitive.

2) Action sur les espaces de matrices

Action par translation

Le groupe $\mathcal{GL}_n(\mathbb{K})$ agit sur $\mathcal{M}_n(\mathbb{K})$ par multiplication à gauche.

Proposition 30. Les orbites sont en bijections avec les sous-espaces vectoriels de \mathbb{K}^n : $A \sim B \Leftrightarrow \operatorname{Ker} A = \operatorname{Ker} B$.

Proposition 31. Toute matrice est dans l'orbite d'une unique matrice échelonnée.

Action par conjugaison

Le groupe $\mathcal{GL}_n(\mathbb{K})$ agit sur $\mathcal{M}_n(\mathbb{K})$ par $P \cdot M = PMP^{-1}$. Cette action traduit le changement de base. La réduction des endomorphismes consiste à trouver des représentants élémentaires des orbites de cette action.

Théorème 32. Soit $A \in \mathcal{M}_n(\mathbb{C})$. On note O_A l'orbite de A pour cette action. Alors O_A est fermé dans $\mathcal{M}_n(\mathbb{C})$ si, et seulement si, A est diagonalisable. De plus, $O \in \overline{O_A}$ si, et seulement si, A est nilpotente.

Proposition 33. Deux matrices A, B de $\mathcal{M}_n(\mathbb{R})$ sont semblables dans $\mathcal{M}_n(\mathbb{C})$ si, et seulement si, elles le sont dans $\mathcal{M}_n(\mathbb{R})$.

Action par équivalence

Le groupe $\mathcal{GL}_n(\mathbb{K}) \times \mathcal{GL}_n(\mathbb{K})$ agit sur $\mathcal{M}_{n,m}(\mathbb{K})$ par $(P,T) \cdot M = PMT^{-1}$. Deux matrices de la même orbites sont dites équivalentes. On peut définir le rang d'une matrice comme sa classe de conjugaison pour cette action.

Proposition 34. Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . En notant O_r l'orbite des matrices de rang r, on a que, pour tout $r \leq \min(n, m)$, $\overline{O_r} = \bigcup_{k \leq r} O_k$.

IV Éléments de topologie

On se place dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On munit $\mathcal{M}_n(\mathbb{K})$ d'une norme quelconque.

Proposition 35. L'ensemble $\mathcal{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$.

Proposition 36. L'ensemble $\mathcal{GL}_n(\mathbb{C})$ est connexe dans $\mathcal{M}_n(\mathbb{C})$, cependant $\mathcal{GL}_n(\mathbb{R})$ n'est pas connexe et admet deux composantes connexes.

Proposition 37. L'ensemble $SL_n(\mathbb{K})$ est connexe dans $\mathcal{M}_n(\mathbb{K})$.

Proposition 38. L'ensemble $SO_n(\mathbb{K})$ est connexe par arcs, et $O_n(\mathbb{R})$ a deux composantes connexes homéomorphes.

Proposition 39. Le groupe $\mathcal{O}_n(\mathbb{R})$ est compact.

Théorème 40 (Décomposition polaire). On a les homéomorphismes :

$$\begin{array}{cccc}
\mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) & \longrightarrow & \mathcal{GL}_n(\mathbb{R}) & \mathcal{U}_n(\mathbb{R}) \times \mathcal{H}_n^{++}(\mathbb{R}) & \longrightarrow & \mathcal{GL}_n(\mathbb{R}) \\
(O,S) & \longmapsto & OS & (U,H) & \longmapsto & UH
\end{array}$$

Corollaire 41. Tout sous-groupe compact de $\mathcal{GL}_n(\mathbb{R})$ qui contient le groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ est le groupe $\mathcal{O}_n(\mathbb{R})$ lui-même.

Développements

- Générateurs de $\mathcal{GL}(E)$ et de $\mathcal{SL}(E)$ (15,16,17) [Per96]
- Réduction des endomorphismes normaux (27) [Gou94, CG13]
- Décomposition polaire (40) [CG13]

Références

[CG13] P. Caldero et J. Germoni. Histoires Hédonistes de Groupes et de Géométries 1. Calvage et Mounet

[Per96] D. Perrin. Cours d'Algèbre. Ellipses

[Gou94] X. Gourdon. Les Maths en Tête : Algèbre. Ellipses, 2e édition

[Rom20] J.-E. Rombaldi. Algèbre et Géométrie. DeBoeck

[Ulm12] F. Ulmer. Théorie des groupes. Ellipses